79 research outputs found

    A Survey of Downlink Non-orthogonal Multiple Access for 5G Wireless Communication Networks

    Get PDF
    Accepted by ZTE CommunicationsAccepted by ZTE CommunicationsAccepted by ZTE CommunicationsAccepted by ZTE CommunicationsAccepted by ZTE CommunicationsNon-orthogonal multiple access (NOMA) has been recognized as a promising multiple access technique for the next generation cellular communication networks. In this paper, we first discuss a simple NOMA model with two users served by a single-carrier simultaneously to illustrate its basic principles. Then, a more general model with multicarrier serving an arbitrary number of users on each subcarrier is also discussed. An overview of existing works on performance analysis, resource allocation, and multiple-input multiple-output NOMA are summarized and discussed. Furthermore, we discuss the key features of NOMA and its potential research challenges

    Multiple UAV-Borne IRS-Aided Millimeter Wave Multicast Communications: A Joint Optimization Framework

    Get PDF
    In this letter, we design a resource allocation algorithm for communications in millimeter wave (mmWave) multicast systems adopting multiple unmanned aerial vehicle (UAV)-borne intelligent reflecting surfaces (IRSs). Considering the effect of blockages of building, we jointly optimize the placement of UAVs and the beamforming at the ground base station (BS) and the passive beamforming at the UAV-borne IRSs for maximizing the minimum rate of multiple user clusters. For handling the non-convex optimization problem, firstly, we employ the simulated annealing (SA)-based hybrid particle swarm optimization (HPSO) algorithm to design the deployment of UAVs for maximizing the average minimum achievable rate. Then, we propose a penalty-based block coordinated descent (BCD) algorithm to design the active and passive beamforming for maximizing the instantaneous minimum rate. Simulation results validate the efficiency of our proposed joint optimization framework

    Resource Allocation for Wireless-Powered Full-Duplex Relaying Systems with Nonlinear Energy Harvesting Efficiency

    Get PDF
    In wireless power transfer (WPT)-assisted relaying systems, spectral efficiency (SE) of source-relay link plays a dominant role in system SE performance due to the limited transmission power at the WPT-aided relay. In this paper, we propose a novel protocol for a downlink orthogonal frequency division multiple access (OFDMA) system with a WPT-aided relay operating in full-duplex (FD) decode-and-forward (DF) mode, where the time slot durations of the source-relay and relay-users hops are designed to be dynamic, to enhance the utilization of degrees of freedom and hence the system SE. In particular, a multiple-input and signal-output (MISO) source-relay channel is considered to satisfy the stringent sensitivity of the energy harvesting (EH) circuit at the relay, while a single-input and single-output (SISO) relay-user channel is considered to alleviate the power consumption at the relay node. Taking into account the non-linearity of EH efficiency, a near-optimal iteration-based dynamic WPT-aided FD relaying (A-FR) algorithm is developed by jointly optimizing the time slot durations, subcarriers, and transmission power at the source and the relay. Furthermore, self-interference generated at the relay is utilized as a vital energy source rather than being canceled, which increases substantially the total energy harvested at the FD relay. We also reveal some implicit characteristics of the considered WPT-aided FD relaying system through intensive discussions. Simulation results confirm that the proposed A-FR achieves a significant enhancement in terms of SE with different relay's locations and the number of users, compared to the conventional symmetric WPT-aided FD relaying (S-FR) and the time-switching-based WPT-aided FD relaying (TS-FR) benchmarks

    Unsourced Random Massive Access with Beam-Space Tree Decoding

    Get PDF
    The core requirement of massive Machine-Type Communication (mMTC) is to support reliable and fast access for an enormous number of machine-type devices (MTDs). In many practical applications, the base station (BS) only concerns the list of received messages instead of the source information, introducing the emerging concept of unsourced random access (URA). Although some massive multiple-input multiple-output (MIMO) URA schemes have been proposed recently, the unique propagation properties of millimeter-wave (mmWave) massive MIMO systems are not fully exploited in conventional URA schemes. In grant-free random access, the BS cannot perform receive beamforming independently as the identities of active users are unknown to the BS. Therefore, only the intrinsic beam division property can be exploited to improve the decoding performance. In this paper, a URA scheme based on beam-space tree decoding is proposed for mmWave massive MIMO system. Specifically, two beam-space tree decoders are designed based on hard decision and soft decision, respectively, to utilize the beam division property. They both leverage the beam division property to assist in discriminating the sub-blocks transmitted from different users. Besides, the first decoder can reduce the searching space, enjoying a low complexity. The second decoder exploits the advantage of list decoding to recover the miss-detected packets. Simulation results verify the superiority of the proposed URA schemes compared to the conventional URA schemes in terms of error probability

    Bayesian Predictive Beamforming for Vehicular Networks: A Low-Overhead Joint Radar-Communication Approach

    Get PDF
    The development of dual-functional radar-communication (DFRC) systems, where vehicle localization and tracking can be combined with vehicular communication, will lead to more efficient future vehicular networks. In this paper, we develop a predictive beamforming scheme in the context of DFRC systems. We consider a system model where the road-side unit estimates and predicts the motion parameters of vehicles based on the echoes of the DFRC signal. Compared to the conventional feedback-based beam tracking approaches, the proposed method can reduce the signaling overhead and improve the accuracy of the angle estimation. To accurately estimate the motion parameters of vehicles in real-time, we propose a novel message passing algorithm based on factor graph, which yields a near optimal performance achieved by the maximum a posteriori estimation. The beamformers are then designed based on the predicted angles for establishing the communication links. With the employment of appropriate approximations, all messages on the factor graph can be derived in a closed-form, thus reduce the complexity. Simulation results show that the proposed DFRC based beamforming scheme is superior to the feedback-based approach in terms of both estimation and communication performance. Moreover, the proposed message passing algorithm achieves a similar performance of the high-complexity particle filtering-based methods

    Energy-Efficient Hybrid Beamforming for Multi-Layer RIS-Assisted Secure Integrated Terrestrial-Aerial Networks

    Get PDF
    The integration of aerial platforms to provide ubiquitous coverage and connectivity for densely deployed terrestrial networks is expected to be a reality in the emerging sixth-generation networks. Energy-effificient and secure transmission designs are two important components for integrated terrestrial-aerial networks (ITAN). Inlight of the potential of reconfigurable intelligent surface (RIS) for significantly reducing the system power consumption and boosting information security, this paper proposes a multi-layer RIS-assisted secure ITAN architecture to defend against simultaneous jamming and eavesdropping attacks, and investigates energy-efficient hybrid beamforming for it. Specifically, with the availability of imperfect angular channel state information (CSI), we propose a block coordinate descent (BCD) framework for the joint optimization of the user’s received decoder, the terrestrial and aerial digital precoder, and the multi-layer RIS analog precoder to maximize the system energy efficiency (EE) performance. For the design of the received decoder, a heuristic beamforming scheme is proposed to convert the worst-case design problem into a min-max one and facilitate the developing a closed-form solution. For the design of the digital precoder, we propose an iterative sequential convex approximation approach via capitalizing the auxiliary variables and first-order Taylor series expansion. Finally, a monotonic vertex-update algorithm with a penalty convex-concave procedure (P-CCP) is proposed to obtain the analog precoder with satisfactory performance. Numerical results show the superiority and effectiveness of the proposed optimization framework and architecture over various benchmark schemes

    Energy-efficient precoding in multicell networks with full-duplex base stations

    Get PDF
    © 2017, The Author(s). This paper considers multi-input multi-output (MIMO) multicell networks, where the base stations (BSs) are full-duplex transceivers, while uplink and downlink users are equipped with multiple antennas and operate in a half-duplex mode. The problem of interest is to design linear precoders for BSs and users to optimize the network’s energy efficiency. Given that the energy efficiency objective is not a ratio of concave and convex functions, the commonly used Dinkelbach-type algorithms are not applicable. We develop a low-complexity path-following algorithm that only invokes one simple convex quadratic program at each iteration, which converges at least to the local optimum. Numerical results demonstrate the performance advantage of our proposed algorithm in terms of energy efficiency
    • …
    corecore